Физика

Эквивалентность гравитации и ускорения

На тернистом пути к общей теории относительности в течение восьми лет, сквозь все тени сомнений, Эйнштейна вела путеводная звезда, которая загорелась в ноябре 1907 года. Позднее он называл ее самой удачной идеей в своей жизни. Согласно анекдоту, все произошло из-за маляра, который упал с лесов. Когда Эйнштейн поинтересовался его самочувствием, тот рассказал, что во время падения был очень краткий миг, когда он будто бы парил в воздухе. Годами спустя ученый вспоминал: «Человек в свободном падении не почувствует собственного веса. Я вздрогнул. Эта простая идея оставила во мне глубокий след и подтолкнула к теории гравитации».

В этом письме американскому астроному Джорджу Эллери Хейлу в октябре 1913 года Эйнштейн объясняет возможность того, что «световые лучи отклоняются в гравитационном поле», и предполагает, что, в случае солнечной массы и очень близко от звезды, это отклонение достигает 0,84″ и уменьшается пропорционально 1/R, где R – расстояние между лучом и центром Солнца. Эта идея представляет собой зачаток эксперимента, который в 1919 году доказал общую теорию относительности.

Так появился новый эпизод, позволивший человечеству исследовать природу гравитации. Сначала Галилей бросал с вершины Пизанской башни деревянные и свинцовые шары. Потом пришла очередь Ньютона и его яблока, и, наконец, появился Эйнштейн и несчастный случай с маляром.

В школе нас учат, что гравитация – это сила, которая поддерживает нас на земле, и что космонавты вдалеке от таких больших тел, как Земля, свободно парят во тьме космоса. Тем не менее мы все в некотором смысле космонавты. Если бы волшебным образом у нас под ногами разверзлась пропасть, то мы испытали бы то же свободное падение, что и парашютист, прыгнувший с самолета. Ни Земля, ни взаимное притяжение никуда бы не делись, однако исчезло бы наше ощущение веса. Когда падает чашка кофе, она разбивается на осколки. Если бы мы уронили ее в тот самый момент, когда под нашими ногами разверзлась бездна, чашка сопровождала бы нас в падении, летя рядом.

Человек, находящийся в замкнутом пространстве, не может сказать, парит ли он в вакууме космической капсулы или просто падает. Если он достанет из кармана бумажник и поместит его на уровне глаз, то увидит, что тот останется висеть в воздухе.

Впрочем, необязательно прибегать к уловкам вроде пропасти под ногами или человека, заключенного в замкнутом пространстве. Во время прыжка, сразу после достижения максимальной высоты, мы наслаждаемся кратким мигом свободного падения. Дети упиваются ощущением невесомости, которое они испытывают во время прыжков на батуте. Для тренировки космонавтов в НАСА используется тот же самый феномен: чтобы обеспечить 20 секунд невесомости, реактивный самолет КС-135 взлетает и падает с высоты, словно на воздушных горках. Однако преодоление гравитации имеет и побочные эффекты, недаром пассажиры КС-135 дали ему другое название – тошнолет [1 Англ. Vomit Comet.], и это подтверждает, что наш желудок – лучший детектор ускорений.

Эйнштейн обнаружил иллюзорность, заключенную в таком, казалось бы, основополагающем явлении, как гравитация. Двойственность гравитации и ускорения распространяется на любую массу. Находясь в кабине лифта при изменении его скорости каждый из нас может почувствовать себя легче или тяжелее. Возвращаясь к экспериментам Галилея, представим себе, что мы заключили Доменика в подобие корабельного трюма, без единого люка. Трюм, в свою очередь, находится в огромном космическом лифте, не имеющем никакой массы. Если лифт поднимается с ускорением, дающим Доменику ощущение его собственной массы, то он не сможет определить, на Земле он находится или в космосе.

Удачная идея Эйнштейна напоминает фокус иллюзиониста: с помощью ускорения возможно сымитировать как рост гравитации, так и ее исчезновение. Эту своеобразную связь он назвал принципом эквивалентности. Начиная с 1905 года важнейшей задачей, стоявшей перед ученым, было расширение специальной теории относительности, которая рассматривала исключительно тела, двигающиеся с постоянной скоростью. Совершенная физическая теория обязательно должна учитывать ускорение, а Эйнштейн хотел ввести в нее и понятие гравитации. Закон всеобщего тяготения функционировал на основе математического механизма, который после релятивистского переворота устарел. Знаменитое уравнение Ньютона имело две проблемы.

Если мы присмотримся к нему, то обратим внимание на то, что в знаменателе находится г, расстояние между массами. Однако Эйнштейн знал, что, согласно сокращению Лоренца, два наблюдателя, один из которых находится в движении, а другой в покое, воспринимают расстояние по-разному. Как тогда учитывать эту величину в уравнении? С другой стороны, в этой формуле отсутствует время, то есть действие силы считается моментальным. Однако если m отдаляется от m’ силы начинают действовать по-другому, и это нарушает основную заповедь релятивизма, согласно которой ничто не может двигаться быстрее света. Обнаружив эквивалентность гравитации и ускорения, Эйнштейн понял, что может одновременно решить две задачи: если ему удастся ввести ускорение в теорию относительности, гравитация также автоматически войдет в нее.

 

Print Friendly, PDF & Email

Это интересно:

Биография Майкла Фарадея
В сентябре 1791 года в Ньюингтон-Баттсе, к югу от Лондона, родился Майкл Фарадей. Его роди...
Превращение магнетизма в электричество
Однажды, когда Фарадей, погруженный в размышления о религии, плыл на маленькой лодке по оз...
Наследие Фарадея
Глубокая духовность и способность к самообразованию подталкивали Фарадея к неутомимым по...
От специальной теории относительности к общей
  Немецкий математик Герман Минковский (1864-1909) подготовил почву для того, ...
Close

Adblock Detected

Please consider supporting us by disabling your ad blocker