pticy-popugai-igry-reka

 

ЗАДАЧА

У одного арабского математика XI века находим следующую задачу.

На обоих берегах реки растет по пальме, одна против другой. Высота одной — 30 локтей, другой — 20 локтей; расстояние между их основаниями — 50 локтей. На верхушке каждой пальмы сидит птица. Внезапно обе птицы заметили рыбу, выплывшую к поверхности воды между пальмами; они кинулись к ней разом и достигли ее одновременно.

На каком расстоянии от основания более высокой пальмы появилась рыба?

РЕШЕНИЕ

Из схематического чертежа (рис. 5), пользуясь теоремой Пифагора, устанавливаем:

АВ2 = 302 + х2, АС2 = 202 + (50—х)2.

Но АВ — АС, так как обе птицы пролетели эти расстояния в одинаковое время. Поэтому

302 + х2 — 202 + (50—х)2.

 

Раскрыв скобки и сделав упрощения, получаем уравнение первой степени 1 00а:=2000, откуда л:=20.

Рыба появилась в 20 локтях от той пальмы, высота которой 30 локтей.

Print Friendly

Это интересно: