Бактериородопсин, галобактерии

Существует еще один путь использования человеком сол­нечной энергии, усвоенной растениями, — непосредствен­ная трансформация световой энергии в электрическую.

Выше мы проследили путь возбужденного квантом света электрона в ходе фотосинте­за. В настоящее время он изучен довольно детально. Именно способность хлоро­филла под действием света отдавать и присоединять электроны лежит в основе ра­боты генераторов, содержа­щих хлорофилл.
М. Кальвин, работы которо­го мы уже неоднократно упо­минали, в 1972 году выдвинул идею создания фотоэлемента, в котором в качестве источ­ника электрического тока слу­жил бы хлорофилл, способный при освещении отнимать элек­троны от каких-то определен­ных веществ и передавать их другим. Кальвин использовал в качестве проводника, контак­тирующего с хлорофиллом, оксид цинка. При освещении этой системы в ней возникал электрический ток плотностью 0,1 микроампера на квадрат­ный сантиметр. Этот фото­элемент функционировал срав­нительно недолго, поскольку хлорофилл быстро терял спо­собность отдавать электроны.
Для продления времени действия фотоэлемента был использован дополнительный источник электронов — гидро­хинон. В новой системе зеле­ный пигмент отдавал не толь­ко свои, но и электроны гид­рохинона. Расчеты показы­вают, что такой фотоэлемент площадью 10 квадратных мет­ров может обладать мощ­ностью около киловатта.
Японский профессор Фуд- зио Такахаси для получения электроэнергии использовал хлорофилл, извлеченный из листьев шпината. Транзистор­ный приемник, к которому бы­ла присоединена солнечная ба­тарейка, успешно работал. Кроме того, в Японии прово­дятся исследования по пре­образованию солнечной энер­гии в электрическую с по­мощью цианобактерий, выра­щенных в питательной среде. Тонким слоем их наносят на прозрачный электрод из оксида цинка и вместе с противоэлектродом погружают в буферный раствор. Если те­перь бактерии осветить, то в цепи возникнет электрический ток.

В 1973 году американцы У. Стокениус и Д. Остерхельт описали необычный белок из мембран фиолетовых бактерий (Halobacterium halobium), обитающих в соленых озерах Калифорнийских пустынь. Его назвали бактериородопсином. Это вещество представляет собой белок, соединенный с каротиноидом (о каротинои­дах мы поговорим ниже) ретиналем, состоящим из 20 уг­леродных атомов. Он похож на родопсин — пигмент сет­чатки глаза позвоночных жи­вотных, что и определило его название. Белковая часть ро­допсина представлена поли- пептидной цепью умеренной длинны, состоящей из 248 ами­нокислотных остатков, после­довательность расположения которых в молекуле выяснена учеными. Большой вклад в исследование структуры бак- териородопсина внесли совет­ские учёные, работавшие под руководством академика




Ю. А. Овчинникова.
В конце 1973 года в АН СССР был разработан проект сравнительного изучения жи­вотного и бактериального пиг­ментов, получивший название «Родопсин». В 1978 году жур­нал «Биоорганическая химия» опубликовал статью, в кото­рой излагалась последова­тельность расположения ами­нокислот в молекуле бакте- риородопсина. Лишь через год подобная работа была завер­шена в США под руковод­ством известного биохимика Г. Кораны.

Любопытно отметить, что бактериородопсин появляется в мембранах галобактерий при недостатке кислорода. Де­фицит же кислорода в водое­мах возникает в случае ин­тенсивного развития галобак­терий. С помощью бактерио- родопсина бактерии усваи­вают энергию Солнца, ком­пенсируя тем самым возник­ший в результате прекраще­ния дыхания дефицит энергии.
Бактериородопсин можно вы­делить из галобактерий, помес­тив эти соелюбивые созда­ния, прекрасно чувствующие себя в насыщенном растворе поваренной соли, в воду. Тотчас же они переполняются водой и лопаются, при этом их содержимое смешивается с окружающей средой. И толь­ко мембраны, содержащие бак­териородопсин, не разрушают­ся из-за прочной «упаковки» молекул пигмента, которые образуют белковые кристаллы (еще не зная структуры, уче­ные назвали их фиолетовыми бляшками). В них молекулы бактериородопсина объедине­ны в триады, а триады — в правильные шестиугольники.
Поскольку бляшки значи­тельно крупнее всех других компонентов галобактерий, их нетрудно выделить путем цен­трифугирования. После про­мывки центрифугата получа­ется пастообразная масса фи­олетового цвета. На 75 про­центов она состоит из бакте­риородопсина и на 25 — из фосфолипидов, заполняющих промежутки между белковыми молекулами. Фосфолипиды — это молекулы жиров в соеди­нении с остатками фосфорной кислоты. Другие вещества в центрифугате отсутствуют, что создает благоприятные условия для экспериментиро­вания с бактериородопсином. К тому же это сложное соеди­нение очень устойчиво к фак­торам внешней среды. Оно не утрачивает активности при нагревании до 100 °С и может храниться в холодильнике го­дами. Бактериородопсин ус­тойчив к кислотам и различ­ным окислителям. Причина его высокой устойчивости обусловлена тем, что эти гало- бактерии обитают в чрезвы­чайно суровых условиях — в насыщенных солевых раство­рах, какими, по существу, являются воды некоторых озер в зоне выжженных тро­пическим зноем пустынь. В та­кой чрезвычайно соленой, да к тому же еще и перегретой, среде организмы, обладающие обычными мембранами, су­ществовать не могут. Это обстоятельство представляет большой интерес в связи с возможностью использования бактериородопсина в качестве трансформатора световой эне­ргии в электрическую.
Если выпавший в осадок под воздействием ионов каль­ция бактериородопсин осве­тить, то с помощью вольт­метра можно обнаружить наличие электрического потен­циала на мембранах. Если выключить свет, он исчезает. Таким образом, ученые дока­зали, что бактериородопсин может функционировать как генератор электрического то­ка.

В лаборатории известного советского ученого, специа­листа в области биоэнергети­ки В. П. Скулачева тщательно исследовались процесс встра­ивания бактериородопсина в плоскую мембрану и условия функционирования его в ка­честве светозависимого гене­ратора электрического тока.
Позднее в этой же лабора­тории были созданы электри­ческие элементы, в которых использовались белковые ге­нераторы электрического тока. В этих элементах имелись мембранные фильтры, пропи­танные фосфолипидами с бактериородопсином и хлорофил­лом. Ученые полагают, что подобные фильтры с белками- генераторами, соединенные последовательно, могут слу­жить в качестве электричес­кой батареи.
Исследования по приклад­ному использованию белков — генераторов, выполненные в лаборатории В. П. Скула­чева, привлекли к себе прис­тальное внимание ученых. В Калифорнийском универси­тете создали такую же бата­рею, которая при однократном использовании в течение полу­тора часов заставляла све­титься электрическую лампоч­ку. Результаты экспериментов вселяют надежду, что фото­элементы на основе бактерио­родопсина и хлорофилла най­дут применение в качестве генераторов электрической энергии. Проведенные опы­ты — первый этап в создании новых видов фотоэлектричес­ких и топливных элементов, способных трансформировать световую энергию с большой эффективностью.

Print Friendly

Это интересно: