tabl

Или как Менделеев открыл свою таблицу.

В старом здании химической лаборатории Петербургского университета сидел молодой, но уже известный профессор. Это был Дмитрий Иванович Менделеев. Он только что получил кафедру общей химии в университете и был занят составлением курса для студентов. Он искал при этом наиболее удобных форм для изложения законов химии, описания истории отдельных элементов и упорно думал над тем, как построить свои лекции. Как связать между собой рассказы о калии, натрии или литии, о железе, марганце и никеле? Он уже чувствовал, что есть какие-то, не совсем еще понятные связи между отдельными химическими элементами.
Для того чтобы найти лучший порядок, он взял отдельные карточки и на них написал крупными буквами название элемента, его атомный вес и некоторые главные свойства. Затем он стал раскладывать эти карточки, группируя элементы по их свойствам, примерно так, как наши бабушки раскладывали вечерами свои пасьянсы.
И вот профессор увидел замечательную закономерность. Он разложил все химические элементы подряд, в порядке увеличения атомного веса, и оказалось, что, за немногими исключениями, через определенные промежутки свойства элементов начали повторяться. Тогда он стал подкладывать следующие карточки под первым рядом и сделал второй, а отложив семь элементов, начал раскладывать третий ряд.
В этом ряду пришлось разложить уже семнадцать элементов, так, чтобы похожие атомы лежали один под другим; да и не очень хорошо все сходилось, пришлось оставлять свободные места. Затем снова таких же семнадцать карточек — получился следующий ряд. Дальше дело пошло сложнее, — ряд атомов совсем не хотел укладываться, но все же повторение свойств намечалось ясно.

Таким образом, все известные Д. И. Менделееву элементы расположились в виде особой таблицы, при этом, за немногими исключениями, все они следовали один за другим горизонтальными рядами в порядке повышения их атомного веса, а сходные элементы оказались расположенными по вертикали в ряды колонок.
В марте 1869 г. Д. И. Менделеев прислал в Физико-химическое общество в Петербурге первое краткое сообщение о своем законе. Потом, предвидя огромное значение сделанного им открытия, он стал упорно над ним работать, уточнять, исправлять свою таблицу. Он скоро убедился, что в таблице есть пустые места.
«В этих пустых местах за кремнием, бором и алюминием будут найдены новые вещества», — говорил он. Это предсказание вскоре сбылось, и пустые клетки таблицы были заполнены вновь открытыми элементами, получившими названия галлия, германия и скандия.




Так русским химиком Д. И. Менделеевым было сделано величайшее в истории химии открытие. Но не думайте, друзья, что это так просто — взять карточки, написать на них названия, разложить по порядку — и все готово! Эта простота, эта как бы некоторая случайность в открытии — только кажущаяся. Ведь в те времена было известно лишь 62 элемента. Атомные веса были определены неточно, отчасти неверно, свойства атомов были изучены еще плохо.
Надо было суметь вникнуть в природу каждого химического вещества, понять сходство одних элементов с другими, разгадать пути странствования каждого из них, их «дружбу» или «вражду» в самой земле.
Д. И. Менделееву удалось связать воедино все то, что до него было сделано по изучению химии Земли.
Связи между элементами, правда еще в неясном и не совершенном виде, подмечали и другие ученые. B порядке таблицы Менделеева, молодой английский физик Генри Мозли совершенно неожиданно в 1913 г. раскрыл еще одну закономерность таблицы Менделеева и установил важную роль порядкового номера элемента в таблице.

Он доказал, что самое важное в элементе — это заряд центрального ядра, который точно равен порядковому номеру элемента. У водорода он равен единице, у гелия — двум, а, например, у цинка — тридцати, у урана — девяноста двум. И столько же электронов привязано этими зарядами к ядру и носится вокруг него по орбитам.
Во всех атомах число электронов, окружающих ядро атома, равно порядковому номеру элемента. Все электроны определенным образом распределяются по отдельным слоям. Первый, ближайший к ядру слой К содержит у водорода 1 электрон, а у всех других элементов — 2 электрона. Второй слой L у большинства атомов содержит 8 электронов. Слой М может иметь до 18 электронов, слой N — до 32.Химические свойства атомов определяются главным образом строением внешнего электронного слоя, который отличается особой устойчивостью, когда число электронов в нем достигает восьми. Атомы, имеющие во внешнем слое один или два электрона, легко их отдают, превращаясь при этом в ионы. Например, натрий, калий, рубидий имеют во внешней оболочке по одному электрону. Они легко их теряют и превращаются в одновалентные положительно заряженные ионы. При этом следующий электронный слой становится, таким образом, внешним слоем. Он содержит восемь электронов, что обеспечивает устойчивость иона-атома.
Атомы кальция, бария и других щелочноземельных металлов имеют по два внешних электрона, потеряв которые они превращаются в устойчивые двухвалентные положительные ионы. Атомы брома, хлора и других галоидов имеют во внешней оболочке по семи электронов. Они жадно захватывают электроны из внешних оболочек других атомов и, дополнив ими свою оболочку до восьми электронов, становятся устойчивыми отрицательными ионами.
У элементов, имеющих во внешней оболочке три, четыре и пять электронов, склонность к образованию ионов при химических реакциях выражена менее ярко.
Вес атома и частота его распространения в природе зависят от строения ядра. Химические же свойства элемента и его спектр зависят от числа электронов и оказываются чрезвычайно близкими у элементов, у которых сходно строение внешней электронной оболочки.
Такова тайна атома. Со времени ее открытия химики и физики, геохимики и астрономы, техники и технологи — все поняли, что один из глубочайших законов природы — это периодический закон

Print Friendly

Это интересно: